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Truncated expansions such as Zernike polynomials provide a powerful approach for describing wavefront data.
However, many simple calculations with data in this form can require significant computational effort. Impor-
tant examples include recentering, renormalizing, and translating the wavefront data. This paper describes a
technique whereby these operations and many others can be performed with a simple matrix approach using
monomials. The technique may be applied to other expansions by reordering the data and applying transfor-
mations. The key is the use of the vectorization operator to convert data between vector and matrix descrip-
tions. With this conversion, one-dimensional polynomial techniques may be employed to perform separable op-
erations. Examples are also given for differentiation and integration of wavefronts. © 2009 Optical Society of

America
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1. INTRODUCTION

The motivation for the technique at hand is the complex-
ity in processing wavefront data described with polyno-
mial expansions. Zernike polynomials in particular are
very useful due to their intuitive description and increas-
ingly standardized usage in optometric and ophthalmic
care [1]. But performing simple manipulations such as re-
centering or scaling the coordinates can require rather so-
phisticated algorithms, and a growing body of publica-
tions address how to perform these and similar tasks
using a variety of approaches [2-11]. Noll [2] provide a
matrix method to take derivatives of Zernike expansions.
Guirao et al. [3] describe translation of Zernike expan-
sions with Taylor expansions, and a similar algorithm is
included in the 2004 ANSI standard for ophthalmic data
[1]. Schwiegerling [4], Campbell [5], Dai [6], Janssen and
Dirksen [7], and Shu et al. [8] provide algorithms for the
scaling of Zernike expansions. Bara et al. [9] give a
matrix-based approach to achieve scaling, rotation, and
displacement for Zernike expansions. Dai in [10] devotes
an entire chapter to algorithms for scaling, rotation, and
translation of Zernike and other polynomial expansions.
Lundstrom and Unsbo [11] provide perhaps the most di-
rect and unified treatment yet, employing complex matrix
descriptions to translate, scale, and rotate data. In this
paper we will show how these operations, with the excep-
tion of rotation, may all be performed easily through con-
version to monomials in a bilinear form. Further, to the
list we will add integration, which is extremely useful in
modal reconstruction problems, plus essentially any other
separable transformation.

Ophthalmic data are usually described with a fairly
low number of polynomial terms. Kreuger et al. [12] sug-
gest that an eighth-order description (roughly 45 terms)
be used for refractive surgical correction. Therefore a ma-
trix approach for manipulation of these terms, perhaps in
the form of 45-element vectors and using 45-by-45 ele-
ment matrices, would still take a negligible amount of
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processing time on modern computers. Further as we will
show, for an expansion in monomials—the atomic terms
that make up Zernike and other polynomials—
computations that are separable in Cartesian coordinates
become very simple.

In Section 2 we will summarize the treatment of expan-
sions as vectors and their conversion in matrix equations.
Throughout this paper we will adhere to the following
conventions: italic letters refer to scalar variables and
scalar functions. Bold lowercase letters denote vectors
and vector functions. All vectors are column vectors. Bold
uppercase letters denote matrices. Also, because it will
help minimize confusion, we will use zero-based indexing
of the vector and matrix elements, as is often done in soft-
ware data structures.

2. BACKGROUND

A truncated polynomial expansion of a wavefront in Car-
tesian coordinates may be written

K
wx,y) = > cpop,y), (1)
k=0

where vj(x,y) is the £th polynomial (or monomial), K is
%(N +1)(IV+2) for an Nth-order polynomial representation
of a two-dimensional wavefront, and ¢, is the scalar coef-
ficient of the 2th monomial. Orthonormality of the set of
functions {vy(x,y)} over some domain is convenient for
some tasks but not required here. Note that the ordering
of expansion terms in % is arbitrary and set by conven-
tion.

If the expansion is composed of Zernike polynomials,
then the polynomial v,(x,y) is Z,(x,y), usually given in
polar coordinates as Z,(r,6). And one common ordering
convention is to choose k=%{n(n+2)+m}, with Z, also
called Z,, ,, [1].

© 2009 Optical Society of America
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If, on the other hand, the expansion is composed of mo-
nomials, sometimes described as Taylor monomials [13],
or in the image processing literature as geometric mo-
ments [14], individual terms are

vp(x,y) =y, (2)

where i and j are integers. Clearly some k(i,j) ordering
must be chosen, and there will be a different set of coeffi-
cients from the Zernike expansion. Also note that for an
Nth-order polynomial, i +j<N for all terms. For example,
we would refer to the monomial x2y? as fourth-order in to-
tal, or simply fourth-order, since its value along the line
x=y increases with the fourth power of the radius. There
is no standard ordering convention for monomials, but
one approach would be to list the terms in order of in-
creasing (total) order. Multiple terms with the same value
i+j are ordered with increasing j and decreasing i. For ex-
ample,

w(x,y) = (cox’y°) + (c1x"y® + cxyh)
+ (e + eyt +esx®y?) + Lo, (3)

where we have all terms where the order i +; equals zero,
followed by the terms where i+j equals one, and so on.
For multiple terms with the same order, the terms with
higher powers of x are first.

This results in an ordering with ¢, as the coefficient for
the monomial x%y where

k=5 +j)i+j+1) +]. (4)

In ophthalmic applications, the coordinates are usually
normalized to the pupil radius, as Zernikes are defined on
the unit disk. It is also worthwhile to do this with mono-
mials for numerical precision reasons for some tasks; if
we have a reasonably large image, such that x and y are
large at the edge, then the Nth power of these values will
be much larger than the Nth power at small values of x
and y, and a computer implementation may result in sig-
nificant errors for applications involving a matrix inver-
sion (such as fitting a polynomial to a surface). While such
situations are beyond the scope of this paper, we will as-
sume normalization here as it is also useful to remain
consistent with the normalization used in Zernike polyno-
mials. One may explicitly normalize the terms as in

X i y J
vx,y) = AR (5)

where r is the pupil radius. Or, as is commonly done, one
may assume the coordinates themselves are given in
units normalized to the pupil radius, which we will do in
this paper.

The set of all polynomials of degree N or less can be
treated as a vector space with the particular set of coeffi-
cients for a given expansion {c;} described with the col-
umn vector ¢, i.e., [cg,c1,...,cx]T, where T denotes the
transpose. Then, Eq. (1) can be written as

w(x,y) =elv(x,y), (6)

where v(x,y) is [vo(x,¥),v1(x,), ..., vk(x,y)]T. Zero-based
indexing of vector components allows us to be consistent
between the exponents and vector indices we use, so that
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the kth element of ¢ is simply c,. Additionally, we must fill
in zeros for coefficients that are equal to zero, as the po-
sition in the vector must correspond to the correct mono-
mial to which the coefficient applies. For example, the
polynomial

w(x,y) =2 +y?%) - 1 (7)
is to be viewed as
w(x,y) = (= Da%° + 0xy° + 0x% 1 + 2x2y° + Oxlyt + 2x0y2,
(8)

corresponding to the coefficient vector
[CO,Cl,CQ,C3,C4,C5]T=[—1,O,O,2,0,2]T.

Since a Zernike polynomial is simply a linear combina-
tion of monomials, a linear transformation exists to con-

vert between the Zernike and monomial expansions as

Cn = Tczv

C, = T_lcm’ 9

where ¢, is the vector of Zernike coefficients and ¢,, is the
vector of monomial coefficients.

In fact, any algorithm that can generate Zernike poly-
nomials in Cartesian form is inherently generating the
conversion matrix elements. Assuming we want our mo-
nomials normalized to the pupil radius, each Zernike
polynomial in Cartesian coordinates directly gives a col-
umn of T. The conversion matrix for second-order Zerni-
kes would be

100 0 -3 0
002 0 0 0
020 0 0 0
T=looo o 255 6/ (10)
00026 0 0
000 0 23 -6

the columns of which may be recognized as the scalars
multiplying the monomial terms in each Zernike polyno-
mial. Then given a Zernike expansion of some wavefront,
we arrange it into a corresponding column vector and ap-
ply T. For example, consider the wavefront consisting of
2.5 um of sphere. We have w(x,y)=2.5Z,(x,y), which cor-
responds to the polynomial 2.5v“§(2x2+2y2—1). To verify
the matrix approach gives this result, we form a vector of
the Zernike coefficients which gives ¢,=[0,0,0,0,2.5,0]7.
Then we  compute ¢,=Tc,, which equals
[—2.5\5'5,0,0,5\e’§,0,5\s’§]T, the expected answer in vector
form. Matlab code to generate this conversion matrix is
provided in Appendix A, and the algorithm is derived in
Appendix B.

3. BILINEAR FORM

Now we reconsider the ordering of monomial expansions.
Similar to how Zernikes are enumerated with n and m,
we may enumerate the monomial coefficients with the ex-
ponents i and j of the coordinates, so Eq. (3) becomes
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_ 0,,0 1,,0 0,,1 2,,0 1,1
w(x,y) =copxy" +C10Y" +Co Xy +C20xY +C1 XY

+CO,2x0y2+ ey (11)

which, if truncated to include only terms of order i+j
<N, may be written as

N N-i

wle,y) =2 2 ¢yl (12)
i=0 j=0

Now we define vector functions x and y with elements
x;=x' and y,;=y’, and we define C as a matrix with C; J
=c¢;; for i+j<N and zero otherwise. We are essentially
zero-padding the coefficients for terms with order i+j
> N. Recall we are using zero-based indexing of the vector

and matrix elements. Now Eq. (12) can be written as

w(x,y) =x"Cy. (13)

This is the bilinear form of the polynomial expansion. For
a second order polynomial, x=(1,x,x?)7, y=(1,y,y%)7, and

€0,0 Co,1 Co,2
C=|c10 c11 O |[. (14)
02’0 0 0

If we multiply out x”Cy we will get the terms up to sec-
ond order from Eq. (11).

Now, while the wavefront itself will not be separable in
general, its coordinates can be transformed separately in
this form. Any linear operator that works exclusively on
the space of x or ¥ can be described by a matrix in the ba-
sis {x'} or {y’} and be used to derive new coefficients. For
example, if we wish to scale the x coordinate, we would
produce a matrix that appropriately scaled each member
of the vector x, then apply this to the coefficient matrix to
get new coefficients in the scaled coordinate system. We
compute new coordinates via transformations

!
x' =D,x,

y' =Dy, (15)

where Dy and Dy are the x and y transformation matri-
ces. The full expansion in the new coordinates would be

w'(x',y") = (x')'Cy’ = (D,x)"C(D,y) =x"C'y, (16)

where we have incorporated the transforms into the coef-
ficients. The expression for the new set of expansion coef-
ficients is therefore

C'=DICD,. (17)

The elements of D can be derived from the basic alge-
bra and calculus of one-dimensional polynomials. Let u
=@ ul,u?, ..., uM)T refer to either x or y. Then for ex-
ample the rule for differentiation of one-dimensional mo-
nomials is simply d/duu’=iu’~!. For the vector u this
yields u’'=(0,1,2u,...,NuM 1T, which can be written in
matrix form as
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u' = = 9 (18)
3u? 0030

for N=3. So we can describe the elements of this matrix
as

o [ iti=i
= . 1
¥ 10, otherwise (19)

Matrix elements for translation, scaling, differentiation,
and integration matrices are given in Table 1. In all cases
the matrices are of size N+1 by N+1. Matlab implemen-
tations of the matrices are given in Appendix A.

Since integration increases the order of the polynomial,
the result must be one order higher. Hence we should
zero-pad the coefficients up to the next order to avoid po-
tential loss of data, then apply the integration matrix at
the higher order. To integrate a second-order coefficient
matrix, we zero-pad the coefficients up to third order, so
Eq. (14) would be made into

Co,0 Co,1 Co2 0
c10 11 0 0

C= ’ ’ . 20
C2y0 O 0 0 ( )

0 0 0 O

Then the transformation matrix that performs integra-
tion on this polynomial is given by

0100
1
00 -0
b 2
= 1l (21)
000 —
3
0000

For differentiation the result will be one lower in total or-
der, requiring no additional consideration.

Given the example from the previous section of 2.5 um
of sphere, we have as our coefficient matrix

Table 1. Bilinear Transformation Matrices for
Nth Order”

Transformation Matrix Elements (Zero-Based Indexing)

o, ifj=i,

Scaling by « D.
710, otherwise.

Differentiation D 1, ifj=i-1,
710, otherwise.
i 1
Integration 1 oitjmien,
D, =1
0, otherwise.
Translation by a (l )ai‘f, ifi=,
D; ;={V
0, otherwise.

“i and j run from 0 to N.
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-25\3 0 53
c=| o o o[ (22)
53 0 0

If we desire differentiation in the x-coordinate, then we
form a differentiation matrix and apply its transpose on
the left to get the new coefficient matrix, as in Eq. (17). As
there is no transformation for the y coordinate, we simply
assume D, is the identity matrix in Eq. (17). So we com-
pute DTC as

00 0]"-25y3 0 5,3 0 00
C'=[100 0 0 0 |=[10y3 0 0,
020]| 53 00 0 00

(23)

which corresponds to w(x,y)=10 \s’gx, just as would be ex-
pected from taking the derivative with respect to x of
2.5 um of sphere. To perform differentiation in the
y-coordinate, we apply the differentiation matrix on the
right to form CD, which is

-25y3 0 5y3|[o 0 o] [0 10,3 O
c=| 0 0 of1o00|=[0 0o of
503 0 0 J020] [0 0 o

(24)

and which corresponds to w(x,y)=10y3y.

Application to wavefront transformations are obvious;
translation can be used to recenter the pupil by applying
appropriate translation matrices for x and y. Scaling can
be used to renormalize the radius by scaling x and y
equally. Differentiation can be used to produce synthetic
wavefront sensor gradient data, or perhaps in an
extremum-finding algorithm. Integration can be used for
reconstruction in a sensor that measures wavefront gra-
dients by separately integrating each gradient and appro-
priately combining the results.

However to actually perform these applications at this
stage would require multiple steps as data are converted
from Zernike to monomial vector to monomial matrix and
back again. Next we will show how to combine these into
a single step.

4. VECTORIZATION

In Section 3, we showed how various manipulations may
be applied to the coefficient data once it has been manu-
ally assembled into the matrix form C. Next we present
the use of standard mathematical methods that may
handle this bookkeeping in a straightforward fashion.
Strictly speaking, interconversion between vectors and
matrices, such as the conversion between ¢ from Eq. (6)
and C from Eq. (13), requires tensor methods [15]. But
while that may sound intimidating, there is a well-known
function that implements the specific operation we need
here, and provides a useful identity, as we shall see.
First, we consider the issue of ordering the matrix ele-
ments C; ; into vector elements ¢;. One approach would be
to order the elements in terms of increasing total order
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(i+)) as in Eq. (3). But if instead we simply append the
N+1 columns of the matrix to form a (N+1)2 long vector,
we can employ the vectorization function Vec [16]. The co-
efficient vector resulting from the vectorized coefficient
matrix is written as

¢ =Vec(C). (25)
For example with a second-order coefficient matrix

€o0,0
€10
C2,0

€o,0 Co,1 Coz2 Co,1
Vecy|c1o c11 O |(=] c11 |- (26)

cop 0 O 0
Co,2
0
0

The superscript on ¢® refers to the inclusion of the
higher-order terms (as zeros) corresponding to monomials
with i+j>N, where N is 2 in this example. As a result
this vector will be roughly twice as long as the ¢ vector of
Eq. (8), as it is (N+1)2 long instead of %(N+ 1)(N+2). We
can easily relate ¢? to ¢ from Eq. (6) via a matrix P that
discards these unwanted zeros,

c=Pc, (27)

To form P we simply start with an (N+1)2 by (N+1)2
identity matrix and remove the rows corresponding to the
higher-order terms in ¢©. Hence P will be %(N +1)(V
+2) by (N+1)2. Further, by permuting the columns of P,
we may adapt the method to any ordering of monomials
desired, say, based on the ordering our Zernike-to-
monomial conversion uses. We note that the ordering of
the coefficients in the vector in Eq. (25) can be written as
simply

EO=i+(N+1)j, (28)

where £© gives the location of the coefficient for mono-
mial x%y/, starting from zero. Given the desired ordering of
powers i and j for each term, such as given by Eq. (4), we
can directly generate P by making a matrix with ones at
locations corresponding to (% ,%?)) for each monomial, and
zero otherwise. An algorithm to generate P is given in Ap-
pendix A.

In the second-order case, the matrix to discard padded
zeros and rearrange coefficients into the increasing-order
sequence of Eq. (3) would be

100000000
010000000
000100000
P=loo100000o0| 29)
000010000
000000100
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Applying this matrix to the vector from Eq. (26) gives
(CO’O,Clyo,CO’l,02)0,01,1,C0’2)T as desired. To go in the oppo-
site direction, we would apply PT. Combining Egs. (25)
and (27) we get the direct interconversion between matrix
and vector forms of coefficients,

¢ =PVec(C),

Vec(C) =PTe. (30)

The key advantage of using the Vec function is that we
may easily convert a transform matrix operating on the
bilinear form of coefficients into a transform matrix oper-
ating on the vector form of coefficients. The matrix repre-
senting multiplication in the equivalent vectorized situa-
tion can be generated using the well-known Kronecker
product ®. We use the mathematical identity [16]

Vec(QRS) = (ST ® Q)Vec(R), (31)

where Q, R, and S are matrices. So when we vectorize the
result C’ from Eq. (17), the identity gives

Vec(D{CD,) = (D! ® D])Vec(C). (32)

We may perform multiple transformations at once by
defining D, and D, as the products of the individual
transformations. Or we may replace D, or D, by the (N
+1) X (IV+1) identity matrix if that coordinate is not to be
transformed at all. Examples are given in Appendix A.

As the left-hand side of Eq. (32) equals Vec(C'), we may
use Eqs. (30) to write the direct transformation for vector
coefficients as

¢'=PVec(C')=P(D] @ D)PTc=M,c,  (33)

where ¢’ is our transformed coefficient vector. M,,, is the
transformation matrix for monomial coefficients in vector
form:

M, =P(D] @ D])P”. (34)

For example, suppose we want to form the matrix cor-
responding to a translation of ¢ in x and & in y, for a
second-order expansion. The transformation matrix D
from Table 1 is the same form for both coordinates and
gives

_ o
Dx= a )
_a2 2a 1]
1 0 o]
D,=|b 1 0] (35)
|67 2b 1]

Since we are transforming both x and y, we would form
the matrix
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'D” »D! 52DT
DI'oDI=| 0 D] 2oD;

L0 o DI

-1 a a® b ab a’b b? ab? a2b2-
012 0 b 2ab 0 b%2 2ab?
00100 & 0 0 b2
00 0 1 a a®> 2b 2ab 2a%

=|00 0 0 1 2 0 2b 4ab
00 00O 1 0 0 2
00 0O0O0 O 1 a a
00000 O 0 1 2a
00 00O O O 0 1
) " (36)

The matrix that we would apply to a vector of mono-
mial coefficients is given by Eq. (34). Using Egs. (36) and
(29), this product is

1 a b a? ab b2
0102 b 0
0010 a 2b
M-=10001 0 o 87
0000 1 0
0000 0 1

To apply this to Zernike coefficients, we would first con-
vert the Zernike coefficients to monomial coefficients via
Eq. (9), next apply the transformation of Eq. (37), then fi-
nally convert the result back to Zernike coefficients with
Eq. (9). So in total we would compute

c,=TM,,Tc,=M.,c,. (38)

The transformation matrix for a vector of Zernike coeffi-
cients therefore, is

M, =T 'P(D] @ D])P'T. (39)

For the translation of second-order Zernikes we apply
T-! and T from Eq. (10) to the respective sides of the ma-
trix in Eq. (37) to get

1 2b 2a 2\6ab 2.3(a®+b% \6(a®-b?
01 0 \6a 2./3b N
Mo|0 01 \/6b 2.3a J6a
“loo 0o 1 0 0
00 0 0 1 0
00 0 0 0 1

"(40)

Ifw(x,y)=c4Z4(x,y) then the coefficient vector would be
¢,=[0,0,0,0,c,,0]". Computing M,c, yields the trans-
formed coefficient vector
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2./3(a? + b%)c,
2 \,/gbC4

2.3
¢ = v Oac“ . (41)

Cy
0

Performing the transformation by hand, meanwhile,
yields

w’(x,y) = ca{\3[2(x +a)? + 2(y + b)2 - 1]}
=c42 V/§(a2 +b%) +c,2 \,@b(2y) +c42 \/ga(Zx)
+c\322% +2y% - 1)
=c42 \,@(az + b)) Zo(x,y) + 42 V@azl(x,y)
+C42\3bZy(x,y) + cuZy(x,y), (42)

which agrees with Eq. (41).

5. CONCLUSION

A matrix approach to perform linear transforms on an ex-
pansion of monomials was described which is very useful
in the transformation of wavefront expansions. Examples
for scaling, translation, differentiation, and integration
were given. The use of permutation matrices and the Kro-
necker product allows the algorithm to be described in a
compact mathematical form, plus provides a means to
generate single-step matrices to perform the transforma-
tions. Perhaps the most obvious task missing from this
approach is rotation of wavefronts. But while rotation is
not separable in Cartesian coordinates, it is separable in
polar coordinates, suggesting a similar method employing
polar monomials r*#". However rotation is already rela-
tively simple with Zernike polynomials, as it requires
only linear combination of the azimuthal frequency terms
within each order. Methods to interconvert between polar
monomials, Cartesian monomials, and Zernike and other
polynomials allow the application to other expansions.
Examples using Zernike polynomials were described in
detail, and all necessary algorithms are provided in the
appendices.

We also note that another use for the bilinear form de-
scription of polynomials could be multiplication of polyno-
mials. Just as one-dimensional polynomials may be mul-
tiplied via convolution of their coefficient vectors, two-
dimensional polynomials may be multiplied via a two-
dimensional convolution of their coefficient matrices.
Vectorization of this operation is possible, but would re-
quire a different approach than used for the linear trans-
formations, so is beyond the scope of this paper.

APPENDIX A

Here we give Matlab code that may perform the included
techniques. As Matlab uses typical mathematical index-
ing (i.e., one-based) of matrix and vector elements, this
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will also serve to describe the equations in that form. N is
used as the order throughout.

Code to generate permutation matrices:

P=zeros(1/2+(N+1)*(N+2),(N+1)"2);
for i=0:N,

for j=0:N-1i,

k=1/2%(1+j)*(A+j+1)+j;
kO=i+(N+1)xj;
Pk+1,k0+1)=1;

end;
end;

Code to generate matrix for scaling by alpha:

Ds=diag(alpha."(0:N));
Code to generate matrix for translation by a:
Dt=zeros(N+1,N+1);
for r=1:N+1,
for c=1:r,

Dt(r,c)=a"(r—c)=*factorial(r-1)/factorial
(c—1)/factorial(r—c);

end;
end;

Code to generate differentiation matrix:
Dd=diag((1:N),-1);

Code to generate integration matrix:

Di=diag((1:N)."(-1),1);

To pad a coefficient vector (Zernike or monomial)

up to the next higher order for integration, we

simply append zeros to it as in the following:
c=[c;zeros(N+2,1)];

To form the vectorized transformation matrix,
we first form the matrices for each coordinate. For
example if we want to scale then translate by
different amounts in both coordinates we would
form:

Dx=Dt1#Ds1;

Dy=Dt2xDs2;
With only a single-coordinate transformation, such
as if we want to integrate in the x direction, we
form:

Dx=Di;

Dy=eye(N+1);
and vice versa for the integration in y.
Differentiation is treated similarly. Finally the
vectorized transformation matrix can be computed
as:

Mm=Pxkron(Dy. ,Dx. )*P.

Given a matrix T that converts monomials to
Zernike coefficients, we may form the Zernike
transformation matrix as:
Mz=inv(T)«Pskron(Dy. ,Dx. )*P. =T
An algorithm for computing T is:
T=zeros(1/2+(N+1)*(N+2),1/2*(N+1)*(N+2));
for n=0:N,

for m=-n:2:n,

k z=1/2#(n*(n+2)+m);

d=m<0;
if m==0, a=sqrt((2+n+2)/2); else a=sqrt(2+n+2);
end;

for 1=0:(abs(m)-d)/2,

for s=0:(n-abs(m))/2,
for t=0:(n-abs(m))/2-s,
b=(-1)*(s+1)*factorial(n-s)/factorial(s) ...
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/factorial((n+abs(m))/2
—s)/factorial((n—abs(m))/2-s) ...
*nchoosek(abs(m),2*1
+d)*nchoosek((n—abs(m))/2-s,t);
i=n-d-2*(s+t+l);
j=2%1+d+2xt;
k. m=1/2%(0+j)*({1+j+1)+]
T(k_m+1,k_z+1)=T(k_m+1,k_z+1)+a*b;
end;
end;
end;
end;
end;

APPENDIX B

We briefly derive the algorithm to produce the Zernike-to-
monomial transformation matrix T, so that we may dem-
onstrate how to incorporate ordering of the terms.
Starting from the expression for Zernike polynomials in
polar coordinates, which we write as
(n—|m|)/2

Zn,m(x,y) = an,mum E (_ 1)8
s=0

(n-s)!
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V2n+2, m#0
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We convert to Cartesian coordinates by making the sub-

s I . .
stitutions r=\x“+y<, x=rcos 6, y=rsin 6, and using the
expansions
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After algebraic manipulation we may combine terms
together into the following expression for generating
Zernike polynomials in Cartesian coordinates:
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i=|m|-21-d+2[(n-|m|)/2-s-t],
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j=2l+d+2[(n-|m|)/2-s]. (B6)

It is evident from Eq. (B6) as we have written it that the
Zernike polynomial is simply a sum of monomials. Note
that the scalars a, b, d, i, and j are functions.

To form the transformation matrix, we must accumu-
late the products ab appropriately for the correct powers,
for each Zernike polynomial. The indexes of the transfor-
mation matrix are k,(n,m) and k,,(i,j), which are the or-
derings of Zernike and monomial coefficients discussed in
the paper. Given a max order N, we start with an empty
matrix T of size %(N+ 1)(N+2) by %(N+ 1)(IN+2) contain-
ing zeros, and accumulate the coefficients into the appro-
priate location, using zero-based indexing of the elements.
So in total, we perform the following algorithm, given in
pseudocode:

for n=0 to N, step=1
for m=-n to n, step=2

Compute kz=%[n(n+2) +m].

Compute d from Eq. (B6).

Compute a from Eq. (B6).

for 1=0 to (jm|-d)/2, step=1

for s=0 to (n—|m|)/2, step=1
for =0 to (n—|m|)/2-s, step=1

Compute b from Eq. (B6).
Compute i from Eq. (B6).
Compute j from Eq. (B6).

Compute %,,= %(i +)(E+]+1)+).
Accumulate T, ; =T , +ab.
end for ¢
end for s
end for [
end for m
end for n

The computation of the index %,, above incorporates the
ordering of the monomial coefficients based on their pow-
ers i and j. To use a different ordering simply replace this

Keith Dillon

step. A different Zernike ordering can similarly be incor-
porated by replacing the computation of £,.
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