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Bilinear wavefront transformation
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Truncated expansions such as Zernike polynomials provide a powerful approach for describing wavefront data.
However, many simple calculations with data in this form can require significant computational effort. Impor-
tant examples include recentering, renormalizing, and translating the wavefront data. This paper describes a
technique whereby these operations and many others can be performed with a simple matrix approach using
monomials. The technique may be applied to other expansions by reordering the data and applying transfor-
mations. The key is the use of the vectorization operator to convert data between vector and matrix descrip-
tions. With this conversion, one-dimensional polynomial techniques may be employed to perform separable op-
erations. Examples are also given for differentiation and integration of wavefronts. © 2009 Optical Society of
America

OCIS codes: 330.4460, 000.3870, 220.1010, 010.1080, 010.1290, 010.7350.
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. INTRODUCTION
he motivation for the technique at hand is the complex-

ty in processing wavefront data described with polyno-
ial expansions. Zernike polynomials in particular are

ery useful due to their intuitive description and increas-
ngly standardized usage in optometric and ophthalmic
are [1]. But performing simple manipulations such as re-
entering or scaling the coordinates can require rather so-
histicated algorithms, and a growing body of publica-
ions address how to perform these and similar tasks
sing a variety of approaches [2–11]. Noll [2] provide a
atrix method to take derivatives of Zernike expansions.
uirao et al. [3] describe translation of Zernike expan-

ions with Taylor expansions, and a similar algorithm is
ncluded in the 2004 ANSI standard for ophthalmic data
1]. Schwiegerling [4], Campbell [5], Dai [6], Janssen and
irksen [7], and Shu et al. [8] provide algorithms for the

caling of Zernike expansions. Bara et al. [9] give a
atrix-based approach to achieve scaling, rotation, and

isplacement for Zernike expansions. Dai in [10] devotes
n entire chapter to algorithms for scaling, rotation, and
ranslation of Zernike and other polynomial expansions.
undström and Unsbo [11] provide perhaps the most di-
ect and unified treatment yet, employing complex matrix
escriptions to translate, scale, and rotate data. In this
aper we will show how these operations, with the excep-
ion of rotation, may all be performed easily through con-
ersion to monomials in a bilinear form. Further, to the
ist we will add integration, which is extremely useful in

odal reconstruction problems, plus essentially any other
eparable transformation.

Ophthalmic data are usually described with a fairly
ow number of polynomial terms. Kreuger et al. [12] sug-
est that an eighth-order description (roughly 45 terms)
e used for refractive surgical correction. Therefore a ma-
rix approach for manipulation of these terms, perhaps in
he form of 45-element vectors and using 45-by-45 ele-
ent matrices, would still take a negligible amount of
1084-7529/09/081839-8/$15.00 © 2
rocessing time on modern computers. Further as we will
how, for an expansion in monomials—the atomic terms
hat make up Zernike and other polynomials—
omputations that are separable in Cartesian coordinates
ecome very simple.
In Section 2 we will summarize the treatment of expan-

ions as vectors and their conversion in matrix equations.
hroughout this paper we will adhere to the following
onventions: italic letters refer to scalar variables and
calar functions. Bold lowercase letters denote vectors
nd vector functions. All vectors are column vectors. Bold
ppercase letters denote matrices. Also, because it will
elp minimize confusion, we will use zero-based indexing
f the vector and matrix elements, as is often done in soft-
are data structures.

. BACKGROUND
truncated polynomial expansion of a wavefront in Car-

esian coordinates may be written

w�x,y� = �
k=0

K

ckvk�x,y�, �1�

here vk�x ,y� is the kth polynomial (or monomial), K is
1
2 �N+1��N+2� for an Nth-order polynomial representation
f a two-dimensional wavefront, and ck is the scalar coef-
cient of the kth monomial. Orthonormality of the set of
unctions �vk�x ,y�� over some domain is convenient for
ome tasks but not required here. Note that the ordering
f expansion terms in k is arbitrary and set by conven-
ion.

If the expansion is composed of Zernike polynomials,
hen the polynomial vk�x ,y� is Zk�x ,y�, usually given in
olar coordinates as Zk�r ,��. And one common ordering
onvention is to choose k= 1

2 �n�n+2�+m�, with Zk also
alled Z [1].
n,m

009 Optical Society of America
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If, on the other hand, the expansion is composed of mo-
omials, sometimes described as Taylor monomials [13],
r in the image processing literature as geometric mo-
ents [14], individual terms are

vk�x,y� = xiyj, �2�

here i and j are integers. Clearly some k�i , j� ordering
ust be chosen, and there will be a different set of coeffi-

ients from the Zernike expansion. Also note that for an
th-order polynomial, i+ j�N for all terms. For example,
e would refer to the monomial x2y2 as fourth-order in to-

al, or simply fourth-order, since its value along the line
=y increases with the fourth power of the radius. There

s no standard ordering convention for monomials, but
ne approach would be to list the terms in order of in-
reasing (total) order. Multiple terms with the same value
+ j are ordered with increasing j and decreasing i. For ex-
mple,

w�x,y� = �c0x0y0� + �c1x1y0 + c2x0y1�

+ �c3x2y0 + c4x1y1 + c5x0y2� + . . . , �3�

here we have all terms where the order i+ j equals zero,
ollowed by the terms where i+ j equals one, and so on.
or multiple terms with the same order, the terms with
igher powers of x are first.
This results in an ordering with ck as the coefficient for

he monomial xiyj where

k = 1
2 �i + j��i + j + 1� + j. �4�

In ophthalmic applications, the coordinates are usually
ormalized to the pupil radius, as Zernikes are defined on
he unit disk. It is also worthwhile to do this with mono-
ials for numerical precision reasons for some tasks; if
e have a reasonably large image, such that x and y are

arge at the edge, then the Nth power of these values will
e much larger than the Nth power at small values of x
nd y, and a computer implementation may result in sig-
ificant errors for applications involving a matrix inver-
ion (such as fitting a polynomial to a surface). While such
ituations are beyond the scope of this paper, we will as-
ume normalization here as it is also useful to remain
onsistent with the normalization used in Zernike polyno-
ials. One may explicitly normalize the terms as in

vk�x,y� = �x

r�
i�y

r�
j

, �5�

here r is the pupil radius. Or, as is commonly done, one
ay assume the coordinates themselves are given in

nits normalized to the pupil radius, which we will do in
his paper.

The set of all polynomials of degree N or less can be
reated as a vector space with the particular set of coeffi-
ients for a given expansion �ck� described with the col-
mn vector c, i.e., �c0 ,c1 , . . . ,cK	T, where T denotes the
ranspose. Then, Eq. (1) can be written as

w�x,y� = cTv�x,y�, �6�

here v�x ,y� is �v0�x ,y� ,v1�x ,y� , . . . ,vK�x ,y�	T. Zero-based
ndexing of vector components allows us to be consistent
etween the exponents and vector indices we use, so that
he kth element of c is simply ck. Additionally, we must fill
n zeros for coefficients that are equal to zero, as the po-
ition in the vector must correspond to the correct mono-
ial to which the coefficient applies. For example, the

olynomial

w�x,y� = 2�x2 + y2� − 1 �7�

s to be viewed as

w�x,y� = �− 1�x0y0 + 0x1y0 + 0x0y1 + 2x2y0 + 0x1y1 + 2x0y2,

�8�

orresponding to the coefficient vector
c0 ,c1 ,c2 ,c3 ,c4 ,c5	T= �−1,0,0,2,0,2	T.

Since a Zernike polynomial is simply a linear combina-
ion of monomials, a linear transformation exists to con-
ert between the Zernike and monomial expansions as

cm = Tcz,

cz = T−1cm, �9�

here cz is the vector of Zernike coefficients and cm is the
ector of monomial coefficients.

In fact, any algorithm that can generate Zernike poly-
omials in Cartesian form is inherently generating the
onversion matrix elements. Assuming we want our mo-
omials normalized to the pupil radius, each Zernike
olynomial in Cartesian coordinates directly gives a col-
mn of T. The conversion matrix for second-order Zerni-
es would be

T = 

1 0 0 0 − �3 0

0 0 2 0 0 0

0 2 0 0 0 0

0 0 0 0 2�3 �6

0 0 0 2�6 0 0

0 0 0 0 2�3 − �6

� , �10�

he columns of which may be recognized as the scalars
ultiplying the monomial terms in each Zernike polyno-
ial. Then given a Zernike expansion of some wavefront,
e arrange it into a corresponding column vector and ap-
ly T. For example, consider the wavefront consisting of
.5 �m of sphere. We have w�x ,y�=2.5Z4�x ,y�, which cor-
esponds to the polynomial 2.5�3�2x2+2y2−1�. To verify
he matrix approach gives this result, we form a vector of
he Zernike coefficients which gives cz= �0,0,0,0,2.5,0	T.
hen we compute cm=Tcz, which equals

−2.5�3,0,0,5�3,0,5�3	T, the expected answer in vector
orm. Matlab code to generate this conversion matrix is
rovided in Appendix A, and the algorithm is derived in
ppendix B.

. BILINEAR FORM
ow we reconsider the ordering of monomial expansions.
imilar to how Zernikes are enumerated with n and m,
e may enumerate the monomial coefficients with the ex-
onents i and j of the coordinates, so Eq. (3) becomes
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w�x,y� = c0,0x0y0 + c1,0x1y0 + c0,1x0y1 + c2,0x2y0 + c1,1x1y1

+ c0,2x0y2 + . . . , �11�

hich, if truncated to include only terms of order i+ j
N, may be written as

w�x,y� = �
i=0

N

�
j=0

N−i

ci,jx
iyj. �12�

Now we define vector functions x and y with elements
i=xi and yi=yi, and we define C as a matrix with Ci,j
ci,j for i+ j�N and zero otherwise. We are essentially
ero-padding the coefficients for terms with order i+ j
N. Recall we are using zero-based indexing of the vector

nd matrix elements. Now Eq. (12) can be written as

w�x,y� = xTCy. �13�

his is the bilinear form of the polynomial expansion. For
second order polynomial, x= �1,x ,x2�T, y= �1,y ,y2�T, and

C = 

c0,0 c0,1 c0,2

c1,0 c1,1 0

c2,0 0 0
� . �14�

f we multiply out xTCy we will get the terms up to sec-
nd order from Eq. (11).

Now, while the wavefront itself will not be separable in
eneral, its coordinates can be transformed separately in
his form. Any linear operator that works exclusively on
he space of x or y can be described by a matrix in the ba-
is �xi� or �yi� and be used to derive new coefficients. For
xample, if we wish to scale the x coordinate, we would
roduce a matrix that appropriately scaled each member
f the vector x, then apply this to the coefficient matrix to
et new coefficients in the scaled coordinate system. We
ompute new coordinates via transformations

x� = Dxx,

y� = Dyy, �15�

here Dx and Dy are the x and y transformation matri-
es. The full expansion in the new coordinates would be

w��x�,y�� = �x��TCy� = �Dxx�TC�Dyy� = xTC�y, �16�

here we have incorporated the transforms into the coef-
cients. The expression for the new set of expansion coef-
cients is therefore

C� = Dx
TCDy. �17�

The elements of D can be derived from the basic alge-
ra and calculus of one-dimensional polynomials. Let u
�u0 ,u1 ,u2 , . . . ,uN�T refer to either x or y. Then for ex-
mple the rule for differentiation of one-dimensional mo-
omials is simply d/duui= iui−1. For the vector u this
ields u�= �0,1,2u , . . . ,NuN−1�T, which can be written in
atrix form as
u� = 

0

1

2u

3u2
� = 


0 0 0 0

1 0 0 0

0 2 0 0

0 0 3 0
�


1

u

u2

u3
� �18�

or N=3. So we can describe the elements of this matrix
s

Di,j = �i, if j = i − 1

0, otherwise� . �19�

atrix elements for translation, scaling, differentiation,
nd integration matrices are given in Table 1. In all cases
he matrices are of size N+1 by N+1. Matlab implemen-
ations of the matrices are given in Appendix A.

Since integration increases the order of the polynomial,
he result must be one order higher. Hence we should
ero-pad the coefficients up to the next order to avoid po-
ential loss of data, then apply the integration matrix at
he higher order. To integrate a second-order coefficient
atrix, we zero-pad the coefficients up to third order, so
q. (14) would be made into

C = 

c0,0 c0,1 c0,2 0

c1,0 c1,1 0 0

c2,0 0 0 0

0 0 0 0
� . �20�

hen the transformation matrix that performs integra-
ion on this polynomial is given by

D = 

0 1 0 0

0 0
1

2
0

0 0 0
1

3

0 0 0 0
� . �21�

or differentiation the result will be one lower in total or-
er, requiring no additional consideration.
Given the example from the previous section of 2.5 �m

f sphere, we have as our coefficient matrix

Table 1. Bilinear Transformation Matrices for
Nth Ordera

Transformation Matrix Elements (Zero-Based Indexing)

Scaling by �
Di,j= ��i, if j= i,

0, otherwise. �
Differentiation

Di,j= �i, if j= i−1,
0, otherwise. �

Integration
Di,j= �1

i
, if j= i+1,

0, otherwise. �
ranslation by a

Di,j= �� i
j �ai−j, if i� j,

0, otherwise. �
ai and j run from 0 to N.
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C = 
− 2.5�3 0 5�3

0 0 0

5�3 0 0
� . �22�

f we desire differentiation in the x-coordinate, then we
orm a differentiation matrix and apply its transpose on
he left to get the new coefficient matrix, as in Eq. (17). As
here is no transformation for the y coordinate, we simply
ssume Dy is the identity matrix in Eq. (17). So we com-
ute DTC as

C� = 

0 0 0

1 0 0

0 2 0
�

T


− 2.5�3 0 5�3

0 0 0

5�3 0 0
� = 


0 0 0

10�3 0 0

0 0 0
� ,

�23�

hich corresponds to w�x ,y�=10�3x, just as would be ex-
ected from taking the derivative with respect to x of
.5 �m of sphere. To perform differentiation in the
-coordinate, we apply the differentiation matrix on the
ight to form CD, which is

C� = 
− 2.5�3 0 5�3

0 0 0

5�3 0 0
�
0 0 0

1 0 0

0 2 0
� = 


0 10�3 0

0 0 0

0 0 0
� ,

�24�

nd which corresponds to w�x ,y�=10�3y.
Application to wavefront transformations are obvious;

ranslation can be used to recenter the pupil by applying
ppropriate translation matrices for x and y. Scaling can
e used to renormalize the radius by scaling x and y
qually. Differentiation can be used to produce synthetic
avefront sensor gradient data, or perhaps in an
xtremum-finding algorithm. Integration can be used for
econstruction in a sensor that measures wavefront gra-
ients by separately integrating each gradient and appro-
riately combining the results.
However to actually perform these applications at this

tage would require multiple steps as data are converted
rom Zernike to monomial vector to monomial matrix and
ack again. Next we will show how to combine these into
single step.

. VECTORIZATION
n Section 3, we showed how various manipulations may
e applied to the coefficient data once it has been manu-
lly assembled into the matrix form C. Next we present
he use of standard mathematical methods that may
andle this bookkeeping in a straightforward fashion.
trictly speaking, interconversion between vectors and
atrices, such as the conversion between c from Eq. (6)

nd C from Eq. (13), requires tensor methods [15]. But
hile that may sound intimidating, there is a well-known

unction that implements the specific operation we need
ere, and provides a useful identity, as we shall see.
First, we consider the issue of ordering the matrix ele-
ents Ci,j into vector elements ck. One approach would be

o order the elements in terms of increasing total order
i+ j� as in Eq. (3). But if instead we simply append the
+1 columns of the matrix to form a �N+1�2 long vector,
e can employ the vectorization function Vec [16]. The co-
fficient vector resulting from the vectorized coefficient
atrix is written as

c�0� = Vec�C�. �25�

or example with a second-order coefficient matrix

Vec�

c0,0 c0,1 c0,2

c1,0 c1,1 0

c2,0 0 0
�� =


c0,0

c1,0

c2,0

c0,1

c1,1

0

c0,2

0

0

� . �26�

he superscript on c�0� refers to the inclusion of the
igher-order terms (as zeros) corresponding to monomials
ith i+ j�N, where N is 2 in this example. As a result

his vector will be roughly twice as long as the c vector of
q. (6), as it is �N+1�2 long instead of 1

2 �N+1��N+2�. We
an easily relate c�0� to c from Eq. (6) via a matrix P that
iscards these unwanted zeros,

c = Pc�0�. �27�

o form P we simply start with an �N+1�2 by �N+1�2

dentity matrix and remove the rows corresponding to the
igher-order terms in c�0�. Hence P will be 1

2 �N+1��N
2� by �N+1�2. Further, by permuting the columns of P,
e may adapt the method to any ordering of monomials
esired, say, based on the ordering our Zernike-to-
onomial conversion uses. We note that the ordering of

he coefficients in the vector in Eq. (25) can be written as
imply

k�0� = i + �N + 1�j, �28�

here k�0� gives the location of the coefficient for mono-
ial xiyj, starting from zero. Given the desired ordering of

owers i and j for each term, such as given by Eq. (4), we
an directly generate P by making a matrix with ones at
ocations corresponding to �k ,k�0�� for each monomial, and
ero otherwise. An algorithm to generate P is given in Ap-
endix A.
In the second-order case, the matrix to discard padded

eros and rearrange coefficients into the increasing-order
equence of Eq. (3) would be

P = 

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0
� . �29�
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pplying this matrix to the vector from Eq. (26) gives
c0,0 ,c1,0 ,c0,1 ,c2,0 ,c1,1 ,c0,2�T as desired. To go in the oppo-
ite direction, we would apply PT. Combining Eqs. (25)
nd (27) we get the direct interconversion between matrix
nd vector forms of coefficients,

c = PVec�C�,

Vec�C� = PTc. �30�

The key advantage of using the Vec function is that we
ay easily convert a transform matrix operating on the

ilinear form of coefficients into a transform matrix oper-
ting on the vector form of coefficients. The matrix repre-
enting multiplication in the equivalent vectorized situa-
ion can be generated using the well-known Kronecker
roduct �. We use the mathematical identity [16]

Vec�QRS� = �ST
� Q�Vec�R�, �31�

here Q, R, and S are matrices. So when we vectorize the
esult C� from Eq. (17), the identity gives

Vec�Dx
TCDy� = �Dy

T
� Dx

T�Vec�C�. �32�

We may perform multiple transformations at once by
efining Dx and Dy as the products of the individual
ransformations. Or we may replace Dx or Dy by the �N
1�� �N+1� identity matrix if that coordinate is not to be

ransformed at all. Examples are given in Appendix A.
As the left-hand side of Eq. (32) equals Vec�C��, we may

se Eqs. (30) to write the direct transformation for vector
oefficients as

c� = PVec�C�� = P�Dy
T

� Dx
T�PTc = Mmc, �33�

here c� is our transformed coefficient vector. Mm is the
ransformation matrix for monomial coefficients in vector
orm:

Mm = P�Dy
T

� Dx
T�PT. �34�

For example, suppose we want to form the matrix cor-
esponding to a translation of a in x and b in y, for a
econd-order expansion. The transformation matrix D
rom Table 1 is the same form for both coordinates and
ives

Dx = 

1 0 0

a 1 0

a2 2a 1
� ,

Dy = 

1 0 0

b 1 0

b2 2b 1
� . �35�

Since we are transforming both x and y, we would form
he matrix
Dy
T

� Dx
T = 


Dx
T bDx

T b2Dx
T

0 Dx
T 2bDx

T

0 0 Dx
T �

= 

1 a a2 b ab a2b b2 ab2 a2b2

0 1 2a 0 b 2ab 0 b2 2ab2

0 0 1 0 0 b 0 0 b2

0 0 0 1 a a2 2b 2ab 2a2b

0 0 0 0 1 2a 0 2b 4ab

0 0 0 0 0 1 0 0 2b

0 0 0 0 0 0 1 a a2

0 0 0 0 0 0 0 1 2a

0 0 0 0 0 0 0 0 1

� .

�36�

The matrix that we would apply to a vector of mono-
ial coefficients is given by Eq. (34). Using Eqs. (36) and

29), this product is

Mm = 

1 a b a2 ab b2

0 1 0 2a b 0

0 0 1 0 a 2b

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
� . �37�

To apply this to Zernike coefficients, we would first con-
ert the Zernike coefficients to monomial coefficients via
q. (9), next apply the transformation of Eq. (37), then fi-
ally convert the result back to Zernike coefficients with
q. (9). So in total we would compute

cz� = T−1MmTcz = Mzcz. �38�

he transformation matrix for a vector of Zernike coeffi-
ients therefore, is

Mz = T−1P�Dy
T

� Dx
T�PTT. �39�

For the translation of second-order Zernikes we apply
−1 and T from Eq. (10) to the respective sides of the ma-

rix in Eq. (37) to get

Mz = 

1 2b 2a 2�6ab 2�3�a2 + b2� �6�a2 − b2�

0 1 0 �6a 2�3b − �6b

0 0 1 �6b 2�3a �6a

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

� .

�40�

If w�x ,y�=c4Z4�x ,y� then the coefficient vector would be
z= �0,0,0,0,c4 ,0	T. Computing Mzcz yields the trans-
ormed coefficient vector
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cz� =

2�3�a2 + b2�c4

2�3bc4

2�3ac4

0

c4

0

� . �41�

erforming the transformation by hand, meanwhile,
ields

w��x,y� = c4��3�2�x + a�2 + 2�y + b�2 − 1	�

= c42�3�a2 + b2� + c42�3b�2y� + c42�3a�2x�

+ c4�3�2x2 + 2y2 − 1�

= c42�3�a2 + b2�Z0�x,y� + c42�3aZ1�x,y�

+ c42�3bZ2�x,y� + c4Z4�x,y�, �42�

hich agrees with Eq. (41).

. CONCLUSION
matrix approach to perform linear transforms on an ex-

ansion of monomials was described which is very useful
n the transformation of wavefront expansions. Examples
or scaling, translation, differentiation, and integration
ere given. The use of permutation matrices and the Kro-
ecker product allows the algorithm to be described in a
ompact mathematical form, plus provides a means to
enerate single-step matrices to perform the transforma-
ions. Perhaps the most obvious task missing from this
pproach is rotation of wavefronts. But while rotation is
ot separable in Cartesian coordinates, it is separable in
olar coordinates, suggesting a similar method employing
olar monomials rn�m. However rotation is already rela-
ively simple with Zernike polynomials, as it requires
nly linear combination of the azimuthal frequency terms
ithin each order. Methods to interconvert between polar
onomials, Cartesian monomials, and Zernike and other

olynomials allow the application to other expansions.
xamples using Zernike polynomials were described in
etail, and all necessary algorithms are provided in the
ppendices.
We also note that another use for the bilinear form de-

cription of polynomials could be multiplication of polyno-
ials. Just as one-dimensional polynomials may be mul-

iplied via convolution of their coefficient vectors, two-
imensional polynomials may be multiplied via a two-
imensional convolution of their coefficient matrices.
ectorization of this operation is possible, but would re-
uire a different approach than used for the linear trans-
ormations, so is beyond the scope of this paper.

PPENDIX A
ere we give Matlab code that may perform the included

echniques. As Matlab uses typical mathematical index-
ng (i.e., one-based) of matrix and vector elements, this
ill also serve to describe the equations in that form. N is
sed as the order throughout.

Code to generate permutation matrices:

=zeros�1/2� �N+1�� �N+2� , �N+1� ˆ2�;
or i=0:N,

for j=0:N−i,
k=1/2� �i+j�� �i+j+1�+j;
k0=i+ �N+1�� j;
P�k+1,k0+1�=1;

end;
nd;
ode to generate matrix for scaling by alpha:

Ds=diag�alpha. ˆ �0:N��;
ode to generate matrix for translation by a:

Dt=zeros�N+1,N+1�;
or r=1:N+1,

for c=1:r,
Dt�r ,c�=aˆ �r−c�� factorial�r−1� / factorial
�c−1� / factorial�r−c�;

end;
nd;
ode to generate differentiation matrix:

Dd=diag��1:N� ,−1�;
ode to generate integration matrix:

Di=diag��1:N� . ˆ �−1� ,1�;
o pad a coefficient vector (Zernike or monomial)
p to the next higher order for integration, we
imply append zeros to it as in the following:

c= �c ;zeros�N+2,1�	;
To form the vectorized transformation matrix,
e first form the matrices for each coordinate. For
xample if we want to scale then translate by
ifferent amounts in both coordinates we would
orm:

Dx=Dt1�Ds1;
Dy=Dt2�Ds2;

ith only a single-coordinate transformation, such
s if we want to integrate in the x direction, we
orm:

Dx=Di;
Dy=eye�N+1�;

nd vice versa for the integration in y.
ifferentiation is treated similarly. Finally the
ectorized transformation matrix can be computed
s:

Mm=P�kron�Dy. ’ ,Dx. ’��P. ’;
iven a matrix T that converts monomials to
ernike coefficients, we may form the Zernike
ransformation matrix as:
z=inv�T��P�kron�Dy. ’ ,Dx. ’��P. ’�T;
n algorithm for computing T is:
=zeros�1/2� �N+1�� �N+2� ,1 /2� �N+1�� �N+2��;

or n=0:N,
for m=−n:2:n,

k �z=1/2� �n� �n+2�+m�;
d=m�0;

f m= =0, a=sqrt��2�n+2� /2�; else a=sqrt�2�n+2�;
nd;
for l=0: �abs�m�−d� /2,

for s=0: �n−abs�m�� /2,
for t=0: �n−abs�m�� /2−s,

b= �−1�� �s+l�� factorial�n−s� / factorial�s� …
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/factorial��n+abs�m�� /2
s� / factorial��n−abs�m�� /2−s� …

�nchoosek�abs�m� ,2� l
d��nchoosek��n−abs�m�� /2−s,t�;

i=n−d−2� �s+t+l�;
j=2� l+d+2�t;
k �m=1/2� �i+j�� �i+j+1�+j
T�k �m+1,k �z+1�=T�k �m+1,k �z+1�+a�b;

end;
end;

end;
end;

nd;

PPENDIX B
e briefly derive the algorithm to produce the Zernike-to-
onomial transformation matrix T, so that we may dem-

nstrate how to incorporate ordering of the terms.
Starting from the expression for Zernike polynomials in

olar coordinates, which we write as

Zn,m�x,y� = an,mum �
s=0

�n−�m��/2

�− 1�s

�
�n − s�!

s!�n + �m�

2
− s�!�n − �m�

2
− s�!

rn−2s,

�B1�
2

an,m = �
�2n + 2, m � 0

�2n + 2

2
, m = 0� , �B2�

um = �
cos�m��, m � 0

sin�m��, m � 0

1, m = 0
� . �B3�

e convert to Cartesian coordinates by making the sub-
titutions r=�x2+y2, x=r cos �, y=r sin �, and using the
xpansions

sin�m�� = �
l=0

�m−1�/2

�− 1�l
m!

�2l + 1�!�m − 2l − 1�!

�cosm−2l−1 � sin2l+1 �

= �
l=0

�m−1�/2

�− 1�l
m!

�2l + 1�!�m − 2l − 1�!

xm−2l−1y2l+1

�x2 + y2�m/2 ,

cos�m�� = �
l=0

m/2

�− 1�l
m!

�2l�!�m − 2l�!
cosm−2l � sin2l �

= �
l=0

m/2

�− 1�l
m!

�2l�!�m − 2l�!

xm−2ly2l

�x2 + y2�m/2 , �B4�

hich yields
Zn,m�x,y� = am,n� �
l=0

�m�/2

�− 1�l
�m�!

�2l�!��m� − 2l�!

x�m�−2ly2l

�x2 + y2��m�/2
, m � 0

�
l=0

��m�−1�/2

�− 1�l
�m�!

�2l + 1�!��m� − 2l − 1�!

x�m�−2l−1y2l+1

�x2 + y2��m�/2
, m � 0

1, m = 0
�

� �
s=0

�n−�m��/2

�− 1�s
�n − s�!

s!�n + �m�

2
− s�!�n − �m�

2
− s�!

�x2 + y2�n−2s/2. �B5�
After algebraic manipulation we may combine terms
ogether into the following expression for generating
ernike polynomials in Cartesian coordinates:

Zn,m�x,y� = a �
l=0

��m�−d�/2

�
s=0

�n−�m��/2

�
t=0

�n−�m��/2−s

bxiyj,

a = �
�2n + 2, m � 0

�2n + 2
, m = 0� ,
b = �− 1�l+s�n − s�!�s!�1

2
�n + �m�� − s�!

��1

2
�n − �m�� − s�!�−1� �m�

2l + d�

1

2
�n − �m�� − s

t
� ,

d = �0, m � 0

1, m � 0� ,

i = �m� − 2l − d + 2��n − �m��/2 − s − t	,
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j = 2l + d + 2��n − �m��/2 − s	. �B6�

t is evident from Eq. (B6) as we have written it that the
ernike polynomial is simply a sum of monomials. Note
hat the scalars a, b, d, i, and j are functions.

To form the transformation matrix, we must accumu-
ate the products ab appropriately for the correct powers,
or each Zernike polynomial. The indexes of the transfor-
ation matrix are kz�n ,m� and km�i , j�, which are the or-

erings of Zernike and monomial coefficients discussed in
he paper. Given a max order N, we start with an empty
atrix T of size 1

2 �N+1��N+2� by 1
2 �N+1��N+2� contain-

ng zeros, and accumulate the coefficients into the appro-
riate location, using zero-based indexing of the elements.
o in total, we perform the following algorithm, given in
seudocode:

or n=0 to N, step=1

for m=−n to n, step=2

Compute kz=
1
2

�n�n+2�+m	.

Compute d from Eq. (B6).
Compute a from Eq. (B6).
for l=0 to ��m�−d� /2, step=1

for s=0 to �n− �m�� /2, step=1
for t=0 to �n− �m�� /2−s, step=1

Compute b from Eq. (B6).
Compute i from Eq. (B6).
Compute j from Eq. (B6).

Compute km=
1
2

�i+ j��i+ j+1�+ j.

Accumulate Tkm,kz
=Tkm,kz

+ab.
end for t

end for s
end for l

end for m
nd for n

The computation of the index km above incorporates the
rdering of the monomial coefficients based on their pow-

rs i and j. To use a different ordering simply replace this
tep. A different Zernike ordering can similarly be incor-
orated by replacing the computation of kz.
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