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Abstract. Rapidly rising levels of myopia, particularly in the developing world, have led to an increased need for
inexpensive and automated approaches to optometry. Here, a simple and robust technique is provided for estimating
major ophthalmic aberrations using a gradient based wavefront sensor. The approach is based on the use of numerical
calculations to produce diverse combinations of phase components, followed by Fourier Transforms to calculate the
coefficients. The approach does not utilize phase unwrapping nor iterative solution of inverse problems. This makes
the method very fast and tolerant to image artifacts, which do not need to be detected and masked or interpolated
as needed in other techniques. These features make it a promising algorithm on which to base low-cost devices for
applications that may have limited access to expert maintenance and operation.
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1 Introduction

Uncorrected refractive error is the leading cause of vision impairment worldwide.1–3 There is a
need for inexpensive solutions, particularly in the developing world, which lacks sufficient re-
sources and specialists. Further, the prevalence of myopia has been rapidly increasing in recent
years in Asia,4 putting a strain on eyecare systems. Wavefront sensors provide one potential av-
enue for automation to help address this problem. Unlike the phoropter,5 which is a complex
apparatus that requires operation by a trained expert to determine the best subjective correction, a
wavefront sensor-based device can directly measure the optical performance of the patient’s eyes.
Conventional autorefractors6 used older technologies and were generally unsuccessful at automat-
ing this evaluation.

The advantage of the wavefront sensor is that it also provides measurements of higher-order
aberrations (where low-order refers to defocus and astigmatic error) which have been shown to
be critical for determining an accurate correction.7, 8 Given these measurements, a more accurate
correction may then be performed with conventional spectacle lenses, for example by optimizing a
sharpness metric that estimates the net effect on the retinal point spread function.9 Unfortunately,
wavefront sensors still tend to be very sophisticated systems, primarily designed for expensive ap-
plications such as refractive surgery10 when used in ophthalmic practice; in such an application, the
cost of errors is very high and clearly an expert operator can be presumed to be available. For the
application of determining the needed refractive correction, however, we can potentially trade off
much of the complexity and cost to address a much wider population. When the goal is correction
of refractive errors, an estimate of the full wavefront error is not needed. It is primarily a subset
of 3rd and 4th order aberrations, particularly the more central terms in the Zernike expansion such
as coma and spherical aberration, which dominate the effects of aberrations on visual acuity.7, 8

Further, these are the largest high-order aberrations seen in the population.11 A better reduction
in complexity would therefore be achieved with a method that focuses on robustly estimating just
these important terms.
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Fig 1 (a) In classical Shack-Hartmann methods,18 focal spot displacements are estimated to get samples of the wave-
front x and y gradients; the wavefront is computed from these gradients via an inversion algorithm, and Zernike
coefficients can be computed from the reconstructed wavefront. (b) Fourier-based methods19 replace the spot detec-
tion step with a demodulation that directly extracts components containing the x and y gradients in their phase; the
phase values are modulus 2π, however, so phase unwrapping is required. (c) The proposed method operates directly
on the demodulated signal components, by estimating the peak locations of products of signals; no phase unwrapping
or inversion is needed.

The most common ophthalmic wavefront sensor utilizes a Shack-Hartmann lenslet array.10, 12

This is a relatively expensive device due to fabrication costs,13 particularly for high-density arrays,
though prices might be reduced significantly given the development of high volume fabrication
techniques targeting the smartphone market.14 Indeed, higher density arrays are desirable to im-
prove accuracy;15 lower density arrays suffer more from the curvature of the wavefront across each
lenslet, as well as edge effects and related distortions caused by localized artifacts. A potentially
cheaper high-density option15 is grating-based sensors, such as those which utilize the Talbot ef-
fect.16, 17 These can easily use grating patterns with a very small pitch (equivalent to a high-density
array), which can be produced by simply etching the grating onto a glass slide attached to the
detector.

In addition to the sensor device, wavefront sensing requires a specialized algorithm to estimate
the wavefront from the detected intensity pattern. Fig. 1 gives an overview of common meth-
ods utilized for Shack-Hartmann and Talbot devices. With higher density lenslet arrays (and with
Talbot gratings), it becomes increasingly difficult to determine the displacements for individual
elements to perform the classical methods of Fig. 1 (a), due to diffraction and reduced SNR,20

which suggests Fourier methods may be more attractive. As depicted in Fig. 1 (b), Fourier meth-
ods typically must unwrap the phase after demodulation of the grating frequency.21 Unfortunately
phase unwrapping remains an open problem,22 as it is ill-posed and NP-hard;23 even in a noise-free
scenario, one cannot guarantee an optimal result without testing a combinatoric number of possible
combinations of 2π steps. In practical terms, phase unwrapping algorithms are particularly sensi-
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Fig 2 Examples of eyelash shadows partly occluding pupil signal; the bright regions are reflections of the laser source
from the cornea and subsequent structures.

tive to localized image artifacts, as are the spot detection methods of Fig. 1 (a), and common issues
such as eyelashes or corneal scars can cause catastrophic failures in reconstruction.24 Fig. 2 gives
examples of eyelashes occluding the pupil, a common artifact which can result in significant dif-
ficulties. Research on phase unwrapping continues, utilizing sophisticated nonlinear optimization
techniques such as total-variation denoising,25 unscented Kalman Filters,26 and sparse modeling.27

Researchers have also proposed techniques to improve or extend other components of the
Fourier methods of Fig 1 (b). Demodulation, for example, can be performed by a fast filtering
in the image domain.28 Gradient inversion is itself a non-trivial inverse problem, and a variety of
techniques have been developed29 including fast non-iterative approaches.30 If the wavefront phase
is small, it may also be extracted directly after demodulation in the spatial frequency domain, by
taking the anti-hermitian component after centering,31 which can then be directly used in Fourier-
based inversion methods. However this approach requires symmetry of the signal aperture, and the
small-angle approximation leads to increasing errors for larger aberrations.

As noted earlier, there are only a limited number of major aberration components of interest for
refractive correction, so a more specialized approach may sidestep the major difficulties of these
conventional reconstruction algorithms. This paper formulates a direct approach to estimate major
aberrations, generally described in Fig. 1 (c), which does not need phase unwrapping or iterative
inversion. The approach uses a numerical technique mathematically similar to a spatial heterodyne,
to create a diversity of images with different aberrations. At each polynomial order, the algorithm
estimates each aberration coefficient by finding the peak frequency component. This technique is
employed in a successive fashion to compute and correct for successively-lower aberrations until
only the low-order terms remain to be calculated much more accurately. Further, the fact that
this approach is not reliant on high-quality estimates of spot locations or pixel phase allows us to
take advantage of higher pitch gratings, which reduces the relative effect of edges and localized
artifacts, and also allows for a very compact and easily-produced sensor. We will demonstrate the
performance of the method with simulations depicting the robustness against severe artifacts, as
well as over a range of realistic aberration magnitudes.

2 Method

An ophthalmic wavefront sensor typically utilizes a monochromatic laser source scattered from a
point on the subject’s retina. Viewing this as a point source, the scattered light passes through the
eye’s optics in reverse, and deviations of the resulting signal from a planar wavefront provide an
estimate of the eye’s optical aberrations. Most commonly, the returning signal is re-imaged from
the eye onto a wavefront sensor, such as in Fig. 3, which depicts a sensor utilizing the Talbot effect
(a) and a Shack-Hartmann array (b). The resulting image at the camera may be described as the
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Fig 3 Wavefront sensor: (a) employing grating with pitch P at appropriate distance from a camera to utilize Talbot
effect, and (b) employing lenslet array with pitch P at appropriate distance from camera to produce focused spot
pattern.

intensity of a interference pattern of the following form,

s(x, y) =
∑
n,m

Cn,m cos
[
m2π

P

(
x− α(x, y)

)
+ n2π

P

(
y − β(x, y)

)]
, (1)

where Cn,m are amplitudes for the different spectral components; P is the pitch of the device array
(e.g., the lenslet spacing); and α(x, y) and β(x, y) are proportional to the horizontal and vertical
gradients, respectively, of the wavefront incident on the sensor, w(x, y),

α(x, y) = d
∂

∂x
w(x, y) (2)

β(x, y) = d
∂

∂y
w(x, y), (3)

where d is a constant that depends on the type of sensor. Neglecting magnification for simplicity,
for a Shack-Hartmann sensor21 we have d = f , the focal length of the lenslets. For a Talbot
sensor17 d = zT = 2P 2/λ, the Talbot distance for the sensor, where λ is the wavelength of the
light (assuming the detector is at the first Talbot plane, otherwise incorporate an appropriate integer
for the plane used). Fig. 4 depicts a simulated example depicting the result of a Talbot sensor with
a sinusoidal grating pattern, as well as a Shack-Hartmann sensor with an equal pitch. The primary
difference is the scalars Cn,m for the harmonics.

The two-dimensional Fourier Transform of the detected image is

s̃(kx, ky) =

∫ ∫
exp {−i2π(kxx+ kyy)} s(x, y)dxdy. (4)
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Fig 4 Simulated grating (top row) and Shack-Hartmann (bottom row) result; detector image (left) and spatial-frequency
image (right). Detector images are 1024x1024 pixels covering 10 millimeters, with a pitch of 42 microns and a
magnification of 2.0; here images are zoomed to central 200x200 pixel region for visibility of pattern.

Fig 5 Example of s̃(kx, ky), two-dimensional spatial Fourier transform of sensor image, depicting locations of subim-
age selection about harmonic terms of interest.

The frequency content of the image is depicted in Fig. 5. The important information can be retained
with just the first linear harmonic terms where (n,m) = (1, 0) and (0, 1), denoted by the boxes in
Fig. 5. For a plane wave, the peaks of the first terms will be located at (0,±k0) and (±k0, 0), where
k0 = 1

P
. Assuming the information is sufficiently concentrated near these points, we can extract

the subimages depicted in Fig. 6, where the origins correspond to the (0, k0) and (k0, 0) points,
respectively, from the original spatial frequency image. By taking the inverse Fourier transform of
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Fig 6 Subimages s̃α and s̃β extracted from Fig. 5, depicting peak locations resulting from aberrations.

these subimages, we get complex images modulated by the phase gradients,

sα(x, y) = C1,0 exp
[
−2πi

P
α(x, y)

]
sβ(x, y) = C0,1 exp

[
−2πi

P
β(x, y)

]
. (5)

2.1 Low-order aberrations

In the absence of high-order aberrations we can immediately calculate the defocus and astigmatism
based on the peak locations, via a relatively simple and well-known Fourier transform technique.
A purely quadratic surface can be written using Zernike basis functions as

w(x, y) = c32
√

6xy + c4

√
3(2x2 + 2y2 − 1) + c5

√
6(x2 − y2). (6)

The derivatives of this wavefront form linear functions, yielding

α(x, y) = d(c32
√

6y + c44
√

3x+ c52
√

6x)

β(x, y) = d(c32
√

6x+ c44
√

3y − c52
√

6y), (7)

and so the Fourier Transforms of Eqs. (5) have the form of delta functions (presuming infinite
continuous functions for clarity)

s̃α(kx, ky) = δ
(
2π
(
x−Xα

)
, 2π
(
y − Yα

))
s̃β(kx, ky) = δ

(
2π
(
x−Xβ

)
, 2π
(
y − Yβ

))
, (8)

with peak locations as labeled in Fig. 6. Solving for the Zernike coefficients based on the peak
locations gives the following estimate,

c3 = − P

4
√

6d
(Xβ + Yα)

c4 = − P

8
√

3d
(Xα + Yβ) (9)

c5 = − P

4
√

6d
(Xα − Yβ)

For some applications, such as system calibration or determining the amount of compensation to
use, this simple estimate may suffice. In the presence of high-order aberrations, however, this
approach will become increasingly inaccurate.
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Fig 7 An excessively large ∆ parameter reduces the amount of pupil information utilized, (a) by 2∆ for the first
product s(y) (and similar for s(x)), (b) by 4∆ for the second products s(yy) (and similar for s(xx)), and (c) by 2∆ in
both directions for the remaining second product s(xy). So a smaller ∆ is desirable to retain the most pupil area.

2.2 High-order aberrations

To address high-order aberrations, we will take advantage of the fact that ophthalmic wavefronts
are dominated by a small number of Zernike terms, while retaining the robustness and simplicity
of Fourier-transform-based methods such as in the previous section. We address high-order terms
by numerically computing shifted products of the demodulated images and their conjugates, and
thereby convert higher-order terms to lower orders by a process similar to differentiation. This will
allow us to subsequently utilize a low-order estimation method like that of the previous section.
While the approach appears quite involved mathematically, the derivation only requires manipu-
lations of small matrices, and the implementation consists of phase adjustments and FFT’s of the
relatively small subimages around the peaks.

The first step is to process the subimages as follows, for both the sα and sβ subimages,

s(x)
α (x, y) = sα(x−∆, y)sα(x+ ∆, y)∗

s(xx)
α (x, y) = s(x)

α (x−∆, y)s(x)
α sα(x+ ∆, y)∗

s(y)
α (x, y) = sα(x, y −∆)sα(x, y + ∆)∗ (10)

s(yy)
α (x, y) = s(y)

α (x, y −∆)s(y)
α (x, y + ∆)∗

s(xy)
α (x, y) = s(y)

α (x−∆, y)s(y)
α (x+ ∆, y)∗.

Recall that the demodulated subimages are complex, unlike the original detected image. We will
label the phase of these subimages with α for those derived from the (1, 0) term and β for those
derived from the (0, 1) terms. For example the phase of s(x)

α is α(x), and the phase of s(x)
β is β(x).

The parameter ∆ is similar conceptually to the distance used in a finite-difference differentiation
estimate (instead of first and second derivatives, we refer to them as first and second products). The
precise choice is not critical, except that a large ∆ discards more information (as depicted in Fig.
7), while a smaller ∆ will result in a smaller frequency shift for our subsequent calculation, making
the result more susceptible to noise and quantization errors. The next section gives a simulation
demonstrating that the output is relatively insensitive to ∆ except for extreme values.

The result of such combinations is most easily understood in terms of transformations of mono-
mials. Recall that a vector z of Zernike coefficients describing all aberrations up to some order,
can be described equivalently by a vector p of coefficients for monomial terms.32 The vector p is
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related to z by a simple linear transformation (i.e., z = Mm2zp). A 4th order wavefront can be
described as the monomial expansion

w(x, y) =
4∑
i=0

4−i∑
j=0

pi,jx
iyj, (11)

for which the coefficients may be easily visualized in the matrix form (using base-zero indexing),

P =


p0,0 p0,1 p0,2 p0,3 p0,4

p1,0 p1,1 p1,2 p1,3 0
p2,0 p2,1 p2,2 0 0
p3,0 p3,1 0 0 0
p4,0 0 0 0 0

 , (12)

with p = vec(P) using the vectorization operator, an operator which reforms matrix elements into
a vector (purely for convenience of notation). In matrix form, separable linear operations may be
performed using a matrix M, such as MTP to transform the x coordinate and PM to transform
the y coordinate. See32 for a more thorough introduction.

The coefficients of the gradient wavefronts α(x, y) and β(x, y) can be computed using a differ-
entiation matrix MD, to get

Pα = MT
DP =


p1,0 p1,1 p1,2 p1,3 0
2p2,0 2p2,1 2p2,2 0 0
3p3,0 3p3,1 0 0 0
4p4,0 0 0 0 0

0 0 0 0 0

 , (13)

Pβ = PMD =


p0,1 2p0,2 3p0,3 4p0,4 0
p1,1 2p1,2 3p1,3 0 0
p2,1 2p2,2 0 0 0
p3,1 0 0 0 0
0 0 0 0 0

 . (14)

In this section, we will assume the device constants P = d = 1 to simplify the notation; the scale
factor P/d may be applied when done, the same as it appears in the previous section for low-order
coefficient estimates. Note that the locations (row and column, counting from zero) in the matrix
Pα and Pβ give the power of the new term via an expansion similar to Eq. (11) for α(x, y) and
β(x, y), respectively. Hence we can easily see that the wavefronts are now 3rd order, as would be
expected from differentiation, since the highest row or column index (when counting from zero)
for a nonzero element is three.

To determine the effect of the shifts by ∆, we use translation matrices of the form,

M∆ =


1 0 0 0
∆ 1 0 0
∆2 2∆ 1 0
∆3 3∆2 3∆ 1

 . (15)
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So, for example, to determine the monomial coefficients for α(x)(x, y) = α(x−∆, y)−α(x+∆, y)
given Pα we would simply compute MT

−∆Pα −MT
∆Pα. The resulting coefficients are

Pα(x) =


4∆p2,0 + 8∆3p4,0 4∆p2,1 4∆p2,2 0

12∆p3,0 12∆p3,1 0 0
24∆p4,0 0 0 0

0 0 0 0

 . (16)

A similar computation for α(xx)(x, y) = α(x)(x+ ∆, y)− α(x)(x−∆, y) gives

Pα(xx) =


24∆2p3,0 24∆2p3,1 0 0
96∆2p4,0 0 0 0

0 0 0 0
0 0 0 0

 . (17)

The wavefront described by these coefficients is linear. Writing out the polynomial gives

α(xx)(x, y) =
4∑
i=0

4−i∑
j=0

(Pα(xx))i,jx
iyj

= 24∆2p3,0 + 96∆2p4,0x+ 24∆2p3,1y. (18)

Hence the processed image will be of the form (where, again, we assume P = d = 1)

s(xx)
α (x, y) = C1,0 exp

[
−2πiα(xx)(x, y)

]
= C1,0 exp

[
−2πi

(
96∆2p4,0x+ 24∆2p3,1y

)]
, (19)

and its two-dimensional Fourier transform will have a peak at a location

(kx, ky) = (96∆2p4,0, 24∆2p3,1). (20)

So by finding the location of this peak we can estimate the p4,0 and p3,1 coefficients of w(x, y).
With similar logic applied to the other processed images we are able to estimate all 4th order
terms, to get

p4,0 =
1

96∆2
X(s(xx)

α )

p3,1 =
1

72∆2

[
Y (s(xx)

α ) +X(s(xy)
α ) +X(s

(xx)
β )

]
p2,2 =

1

64∆2

[
Y (s(xy)

α ) +X(s(yy)
α ) + Y (s

(xx)
β ) +X(s

(xy)
β )

]
(21)

p1,3 =
1

72∆2

[
Y (s(yy)

α ) + Y (s
(xy)
β ) +X(s

(yy)
β )

]
p0,4 =

1

96∆2
Y (s

(yy)
β ),

where the terms which appear in multiple images are averaged, and the coordinates for the peak of
the Fourier transform of an image s are denoted as (X(s), Y (s)).
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The next step is to remove these components from the lower order images, which we achieve by
applying a phase adjustment based on the quantity of the term that exists in each (see Appendix).
For example, from Eq. (16) we see that there are quadratic components resulting from the 4th
order terms of w, namely, 24∆p4,0 in the (2, 0) entry, 12∆p3,1 in the (1, 1) entry, and 4∆p2,2 in the
(0, 2) entry. As a result we would apply

δ(x)
α (x, y) = exp

{
2πi∆

(
24p4,0x

2 + 12p3,1xy + 4p2,2y
2
)}

(22)

to s(x)
α (x, y). Similarly for the other three quadratic images, we would apply

δ(y)
α (x, y) = exp

{
2πi∆

(
6p3,1x

2 + 8p2,2xy + 6p1,3y
2
)}

δ
(x)
β (x, y) = exp

{
2πi∆

(
6p3,1x

2 + 8p2,2xy + 6p1,3y
2
)}

(23)

δ
(y)
β (x, y) = exp

{
2πi∆

(
4p2,2x

2 + 12p1,3xy + 24p0,4y
2
)}
.

Now we can calculate the cubic terms from w(x, y) using the peaks of the Fourier transform of
these corrected images, as

p3,0 =
1

12∆
X(δ(x)

α s(x)
α )

p2,1 =
1

12∆

[
Y (δ(x)

α s(x)
α ) +X(δ(y)

α s(y)
α ) +X(δ

(x)
β s

(x)
β )
]

(24)

p1,2 =
1

12∆

[
Y (δ

(x)
β s

(x)
β ) +X(δ

(y)
β s

(y)
β ) + Y (δ(y)

α s(y)
α )
]

p0,3 =
1

12∆
Y (δ

(y)
β s

(y)
β ).

Lastly we correct the 3rd and 4th order terms in the original gradient subimages, to accurately
compute the 2nd order aberrations, by forming

δα(x, y) = exp

{
2πi∆

(
4p4,0x

3 + 3p3,1x
2y + 2p2,2xy

2

+ p1,3y
3 + 3p3,0x

2 + 2p2,1xy + p1,2y
2
)}

(25)

δβ(x, y) = exp

{
2πi∆

(
p3,1x

3 + 2p2,2x
2y + 3p1,3xy

2

+ 4p0,4y
3 + p2,1x

2 + 2p1,2xy + 3p0,3y
2
)}

.

With these can calculate

p2,0 = 1
2
X(δαsα)

p1,1 = 1
2

[Y (δαsα) +X(δβsβ)] (26)
p0,2 = 1

2
Y (δβsβ).

Finally we form the vector of monomial coefficients which can be transformed to Zernike coeffi-
cients for application,

p = (p2,0, p1,1, p0,2, p3,0, p2,1, p1,2, p0,3, p4,0, p3,1, p2,2, p1,3, p0,4)T . (27)

To summarize, we have the following algorithm:
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Fig 8 True Zernike coefficients used in simulation, and result of algorithm to estimate 4th order Zernikes (Fast4), as
well as a version that stops after estimating 2nd order coefficients (Fast2). Net rms error (the root of the sum of the
errors for each coefficient squared) is 0.043 microns-rms for Fast4, and 2.65 microns-rms for Fast2.

1. Demodulate detected image, producing complex subimages: sα and sβ .

2. Compute first product images: s(x)
α , s(y)

α , s(x)
β , s(y)

β .

3. From first product images, compute second product images: s(xx)
α , s(xy)

α , s(yy)
α , s(xx)

β , s(xy)
β ,

s
(yy)
β .

4. From FFT peaks of second product images, compute 4th order coefficients: p4,0, p3,1, p2,2,
p1,3, p0,4.

5. Using 4th order coefficients, generate phase corrections: δ(x)
α , δ(y)

α , δ(x)
β , δ(y)

β .

6. From FFT peaks of first product images with phase corrections applied, compute 3rd order
coefficients: p3,0, p2,1, p1,2, p0,3.

7. Using 3rd order coefficients, generate phase corrections: δα, δβ .

8. From FFT peaks of original subimages with phase corrections applied, compute 2nd order
coefficients: p2,0, p1,1, p0,2.

9. Transform monomial coefficients to Zernike coefficients, z = Mm2zp.

3 Results

Next the method was tested with a variety of simulations of a Talbot sensor. The simulations used a
pupil size of 5 millimeters with a detected image size of 10 millimeters for 1024x1024 pixels. The
grating pitch was 42 microns, the wavelength was 850 nm, and the magnification was ms = 2.0
(this simply required a scaling be applied to the final terms based on their order). Fig. 8 gives
the estimates versus true coefficients for the example from Fig. 4. Here the result of the simple
2nd order estimate of Eqs. (9) is also demonstrated, which does not use the subsequent high-order
estimates and their correction. Fig. 9 shows the Fourier transforms of the subimages calculated in
the method, for one of the two linear harmonic terms used (specifically for just the (n,m) = (1, 0)
term). First note that the peak in (a), the original subimage, exhibits a large amount of high-order,
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Fig 9 Example of Fourier transforms of subimages used in processing, showing aberrations of peak; (a) s̃α, (b) s̃(x)α ,
(c) s̃(y)α , (d) s̃(xx)α , (e) s̃(xy)α , (f) s̃(yy)α , (g) δ(x)α s̃

(x)
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α , (i) δαs̃α.
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Fig 10 Image artifact examples, with random spots or lines to demonstrate algorithm robustness.

as do the subimages in (b) and (c), computed from a single shifted product. However, the second
shifted product images in (d), (e), and (f) result in Airy disks, as there is no remaining high order at
this point. Similarly, the correction of the previous subimages, depicted in (g), (h), and (i), result in
Airy disks in the Fourier transforms, as the high-order has been accurately estimated and removed.
Figs. 10 and 11 give results for the same case with severe artifacts intentionally added to the image;
again the high order coefficients are accurately estimated.

The previous examples simulate a purely 4th order wavefront, meaning no 5th or higher-order
aberrations are present. This presumption is the basis for the simplifications we were able to
make. To test the effect of realistic levels of higher-order aberrations, a large set of images were
simulated using real 6th order Zernike coefficients for measurements from 1500 subjects collected
using several different wavefront sensors in multiple clinics. Fig. 12 gives the standard deviations
for each Zernike coefficient at 5 mm diameter versus the residual (true minus estimate), which
generally agrees with the statistics found in other studies.11 We see that the magnitude of the terms
drops off quickly after 4th order (corresponding to coefficients above 14). Typically, values in this
region are less than 0.02 micron-rms, which is comparable to the repeatability of the measurement
due to biological variation. In Fig. 12 we see that the error after correction is reduced to this range
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Fig 11 Resulting estimates for the three artifact examples. Net rms errors (the root of the sum of the errors for each
coefficient squared) for Fast4 are 0.056, 0.18, and 0.19 microns-rms. As compared to an error of 0.043 microns-rms
for the example with no artifacts. The net errors for Fast2 are 2.58, 2.56, and 2.74 microns-rms for the three cases,
comparable to the 2.65 microns-rms error in the artifact-free case.
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Fig 12 Standard deviations of coefficients for each Zernike term in simulated data (top) and in residual error after
estimate (bottom). Standard deviations of true Zernike coefficients 3, 4, and 5, are 0.27, 1.40, and 0.4274, respectively.

as well.
Lastly this population data set was used to test the parameter choice ∆. This parameter directly

results in the shift of the peaks within the processed subimages, hence larger ∆ makes this estimate
more accurate. Though note also that interpolation of the Fourier transform peak locations will
generally be needed to accurately measure small coefficients. The choice of larger ∆ also comes
at a price, however, of utilizing less data from the subimages as described in Fig. 7. In our initial
testing, a moderate choice of seven pixels was sufficient, and the result was not very sensitive to
this choice until extremes were reached. This agrees with the simulation results shown in Fig. 13,
where error was found to be small and relatively constant between the extremes of small shifts and
a maximum of about 13.
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Fig 13 Average wavefront error versus shift parameter ∆, for large population of simulated wavefronts. For this pupil
size and sample spacing, the result is relatively insensitive to choices of ∆ in the range from three to twelve.

3.1 Discussion

This paper presented an approach to estimate wavefront aberrations that takes advantage of the
limited order of aberrations seen in ophthalmic applications, in order to provide a measurement
that is simple and robust, advantages that are critical for low-cost applications. The drawbacks of
more sophisticated methods include the need for an expert operator to achieve the best measure-
ment possible and visually reject images containing problematic artifacts, for example to avoid
capturing images that result in catastrophic phase-unwrapping failures. Consider the risks of us-
ing phase unwrapping to estimate the frequency of a noisy signal, versus simply using a Fourier
transform and finding the peak. Sophisticated methods also require additional expert algorithm
development to further detect problematic artifacts that cannot be avoided by the operator, such as
scars and reflections. These expert algorithms generally require careful tuning as with any detec-
tion and classification algorithm, and this tends to limit the range of applicable subjects, including
for example to certain population groups. The key to the approach presented here is the ability of
transform methods to exploit the redundancy from many grating periods, which also complements
the choice of accurate and inexpensive grating-based sensor elements such as the Zernike-based
sensor used in the examples. It should also be noted that the same approach works for a Shack-
Hartmann sensor, as the subimages will be mathematically equivalent, as depicted in Fig. 5.

A 4th order representation was used because this captures the majority of aberrations in most
eyes, as we demonstrated with the population data analysis, but it is straightforward to extend
the method to higher orders. The most obvious way would be to simply continue the process of
computing additional shifted products. Another tactic might be to use a hybrid technique which
takes advantage of the reductions in high order in the shifted-product subimages to subsequently
utilize a simpler phase estimate, perhaps which no longer needs to unwrap the phase, such as Fast
Fourier demodulation.31 At the very least it would be simple to test the quality of the Fourier
transform peak to determine when the method has succeeded.

Appendix - Coefficient Matrices

We list here all the coefficient matrices resulting from the shifted-product operations used.
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Pα(x) =


4∆p2,0 + 8∆3p4,0 4∆p2,1 4∆p2,2 0

12∆p3,0 12∆p3,1 0 0
24∆p4,0 0 0 0

0 0 0 0

 (28)

Pα(y) =


2∆p1,1 + 2∆3p1,3 4∆p1,2 6∆p1,3 0

4∆p2,1 8∆p2,2 0 0
6∆p3,1 0 0 0

0 0 0 0

 (29)

Pα(xx) =


24∆2p3,0 24∆2p3,1 0 0
96∆2p4,0 0 0 0

0 0 0 0
0 0 0 0

 (30)

Pα(xy) =


8∆2p2,1 16∆2p2,2 0 0
24∆2p3,1 0 0 0

0 0 0 0
0 0 0 0

 (31)

Pα(yy) =


8∆2p1,2 24∆2p1,3 0 0
16∆2p2,2 0 0 0

0 0 0 0
0 0 0 0

 (32)

Pβ(x) =


2∆p1,1 + 2∆3p3,1 4∆p1,2 6∆p1,3 0

4∆p2,1 8∆p2,2 0 0
6∆p3,1 0 0 0

0 0 0 0

 (33)

Pβ(y) =


4∆p0,2 + 8∆3p0,4 12∆p0,3 24∆p0,4 0

4∆p1,2 12∆p1,3 0 0
4∆p2,2 0 0 0

0 0 0 0

 (34)

Pβ(xx) =


8∆2p2,1 16∆2p2,2 0 0
24∆2p3,1 0 0 0

0 0 0 0
0 0 0 0

 (35)
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Pβ(xy) =


8∆2p1,2 24∆2p1,3 0 0
16∆2p2,2 0 0 0

0 0 0 0
0 0 0 0

 (36)

Pβ(yy) =


24∆2p0,3 96∆2p0,4 0 0
24∆2p1,3 0 0 0

0 0 0 0
0 0 0 0

 (37)
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List of Figures
1 (a) In classical Shack-Hartmann methods,18 focal spot displacements are estimated

to get samples of the wavefront x and y gradients; the wavefront is computed from
these gradients via an inversion algorithm, and Zernike coefficients can be com-
puted from the reconstructed wavefront. (b) Fourier-based methods19 replace the
spot detection step with a demodulation that directly extracts components contain-
ing the x and y gradients in their phase; the phase values are modulus 2π, however,
so phase unwrapping is required. (c) The proposed method operates directly on the
demodulated signal components, by estimating the peak locations of products of
signals; no phase unwrapping or inversion is needed.

2 Examples of eyelash shadows partly occluding pupil signal; the bright regions are
reflections of the laser source from the cornea and subsequent structures.

3 Wavefront sensor: (a) employing grating with pitch P at appropriate distance from
a camera to utilize Talbot effect, and (b) employing lenslet array with pitch P at
appropriate distance from camera to produce focused spot pattern.

4 Simulated grating (top row) and Shack-Hartmann (bottom row) result; detector
image (left) and spatial-frequency image (right). Detector images are 1024x1024
pixels covering 10 millimeters, with a pitch of 42 microns and a magnification
of 2.0; here images are zoomed to central 200x200 pixel region for visibility of
pattern.

5 Example of s̃(kx, ky), two-dimensional spatial Fourier transform of sensor image,
depicting locations of subimage selection about harmonic terms of interest.

6 Subimages s̃α and s̃β extracted from Fig. 5, depicting peak locations resulting from
aberrations.

7 An excessively large ∆ parameter reduces the amount of pupil information uti-
lized, (a) by 2∆ for the first product s(y) (and similar for s(x)), (b) by 4∆ for the
second products s(yy) (and similar for s(xx)), and (c) by 2∆ in both directions for
the remaining second product s(xy). So a smaller ∆ is desirable to retain the most
pupil area.

8 True Zernike coefficients used in simulation, and result of algorithm to estimate
4th order Zernikes (Fast4), as well as a version that stops after estimating 2nd
order coefficients (Fast2). Net rms error (the root of the sum of the errors for
each coefficient squared) is 0.043 microns-rms for Fast4, and 2.65 microns-rms for
Fast2.

9 Example of Fourier transforms of subimages used in processing, showing aberra-
tions of peak; (a) s̃α, (b) s̃(x)

α , (c) s̃(y)
α , (d) s̃(xx)

α , (e) s̃(xy)
α , (f) s̃(yy)

α , (g) δ(x)
α s̃

(x)
α , (h)

δ
(y)
α s̃

(y)
α , (i) δαs̃α.

10 Image artifact examples, with random spots or lines to demonstrate algorithm ro-
bustness.

11 Resulting estimates for the three artifact examples. Net rms errors (the root of the
sum of the errors for each coefficient squared) for Fast4 are 0.056, 0.18, and 0.19
microns-rms. As compared to an error of 0.043 microns-rms for the example with
no artifacts. The net errors for Fast2 are 2.58, 2.56, and 2.74 microns-rms for the
three cases, comparable to the 2.65 microns-rms error in the artifact-free case.
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12 Standard deviations of coefficients for each Zernike term in simulated data (top)
and in residual error after estimate (bottom). Standard deviations of true Zernike
coefficients 3, 4, and 5, are 0.27, 1.40, and 0.4274, respectively.

13 Average wavefront error versus shift parameter ∆, for large population of simu-
lated wavefronts. For this pupil size and sample spacing, the result is relatively
insensitive to choices of ∆ in the range from three to twelve.
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